彭振赟-导师简介

澳门十大赌博靠谱网站平台 - 十大赌博老品牌网站


姓名:彭振赟

一、基本信息

彭振赟ZhenyunPeng教授

所属学院: 数学与计算科学学院

导师类别: 博士生导师、硕士生导师

科研方向: 仪器科学与技术

博士招生学院:电子工程与自动化学院

硕士招生学院:数学与计算科学学院

联系方式:yunzhenp@163.com 

 

二、个人简述

彭振赟,计算数学博士,二级教授,博士生导师。19856月毕业于娄底师范高等专科学校,获数学教育专业专科学历。19916月毕业于湖南教育学院,获数学教育专业本科学历。19996月毕业于湖南大学毕业,获计算数学硕士学位。20036月毕业于湖南大学,获计算数学博士学位;20066月从中南大学博士后流动站出站。20103月至20113月在加拿大NewBrunswick大学做高级访问学者。曾任中国计算数学学会理事,广西数学学会常务理事,桂林电子科技大学计算数学学科学术带头人。20059月获教授职称资格,2011年获得博士生导师资格,2018年获二级教授资格。

研究方向:工程与科学计算,矩阵理论、方法及其应用,医学图像处理.

主持完成国家自然科学基金项目3项,主持完成省部级项目5项。发表学术论文60多篇,其中SCI检索40余篇。2003年获娄底市政府第二届青年科技奖。2013年获广西区自然科学技术奖三等奖(排名第一),2020年获广西区自然科学技术奖二等奖(排名第三) 

三、学术成果

(一)代表性论文(SCI期刊论文)

[1]Z.Y.PengX.Y.Hu,L.Zhang, The inverse problem for part symmetric matrices on asubspaceJournalof Computational Mathematics, 4(2003), 505-512.

[2]Z.Y.PengX.Y.Hu,L.Zhang, On the construction of a Jacobi matrix from its mixed-typeeigenpairs, Linear Algebra and Its Applications, 362 (2003), 191-200.

[3]Z.Y.Peng,X.Y.HuThereflexive and anti-reflexive solutions of the matrix equation AX=B,Linear Algebra and Its Applications, 375(2003), 147-155.

[4]Z.Y.Peng,X.Y.HuTheGeneralized Reflexive Solutions of the Matrix Equations AX=Dand AXB=D,Numerical Mathematics A Journal of Chinese Universities EnglishSeries (supplement)12(2003)94-98.

[5]Z.Y.PengX.Y.Hu,L.Zhang, The inverse problem of bisymmetric matrices with a submatrixconstraint, Numerical Linear Algebra with Applications, 1(2004),59-73.

[6]Z.Y.PengX.Y.Hu,L.Zhang, The inverse problem of centrosymmetric matrices with asubmatrix constraint, Journal of Computational Mathematics, 4(2004),535-544.

[7]Z.Y.PengX.Y.Hu,L.Zhang, The nearest bisymmetric solutions of linear matrix equations,Journal of Computational Mathematics, 6(2004), 873-880.

[8]Z.Y.Peng,X.L.HanConstructingJacobi matrices with prescribed ordered defective eigenpairs and aprincipal submatrix, Journal of Computational and AppliedMathematics, 175(2005), 321-333.

[9]Z.Y.PengTheInverse eigenvalue Problem for Hermitian Anti-reflexive Matrices andIts Approximation, Applied Mathematics and Computation,162:3(2005),1377-1389.

[10]Z.Y.PengAniterative method for the least squares symmetric solution of thelinear matrix equation AXB=C, Applied Mathematics and Computation, 170(2005)711-723.

[11]Z.Y.Peng, Y.B.Deng,J.W.LiuLeast-squaressolutions of inverse problem for hermitian anti-reflexive matricesand its appoximation, Acta Mathematica Sinica, English Series,22:2(2006), 477-484.

[12]Z.Y.Peng,Y.X.PengAniterative method for the matrix equation AXB+CYD=E, Numerical Linear Algebra with Applications, 13(2006), 473-485.

[13]J.J.HouZ.Y.Peng,X.L.ZhangAniterative method for the least squares symmetric solution of matrixequation AXB= CNumericalAlgorithms42(2006)181–192.

[14]Z.Y.PengSalahM. El-Sayed,X.L.ZhangIterativemethods for the extremal positive definite solution of the matrixequation X+A*X-A=QJournalof Computational and Applied Mathematics200(2007),520-527.

[15]Z.Y.Peng,Salah M. El-SayedOnpositive definite solution of a nonlinear matrix equationNumericalLinear Algebra with Applications, 14 (2007), 99-113.

[16]Z.Y.PengSolutionsof symmetry constrained least squares problemsNumericalLinear Algebra with Applications, 15:4(2008), 373-389.

[17]X.F.DuanZ.Y.PengFujianDuan, Positive definite solutions of two kinds of nonlinear matrixequations, Surveys in Mathematics and its Applications, 4(2009),179-190.

[18]Y.B.Chen, Z.Y.Peng, T.J.Zhou, LSQRiterative common symmetric solutions to matrix equations AXB = Eand CXD = F,Applied Mathematics and Computation, 217(2010), 230-236.

[19]Z.Y.PengAmatrix LSQR iterative method to solve matrix equationAXB=CInternationalJournal of Computer Mathematics87(2010),1820 – 1830.

[20]Z.Y.PengNewmatrix iterative methods for constraints solutions to matrix equationAXB=CJournalof Computational and Applied Mathematics2352010),726-735.

[21]Z.Y.Peng,L.Wang,J.J.Peng,The Solutions of Matrix Equation AX=BOver a Matrix Inequality Constraint, SIAM Journal on Matrix Analysisand Applications, 33:2(2012), 554-568.

[22]J.J.PengZ.Y.PengThesymmetric solutions of the matrix inequality AXBin least-squares senseInternationalJournal of Computer Mathematics3(2013),554-564.

[23]A.B.XuZ.Y.Peng, Norm-ConstrainedLeast-Squares Solutions to the Matrix Equation AXB=CAbstractand Applied Analysis, 2013,Art. ID 781276, DOI:10.1155/2013/781276.

[24]Z.Y.Peng, Y.Z.Fang, X.W.Xiao,D.D.Du,Newalgorithms to compute the nearness symmetric solution of the matrixequation, SpringerPlus,(2016)5:1005.

[25]Z.Y.Peng, C.Z.Zhou, D.D.Du, X.W.XiaoIterationmethods to computr thr separable convex minimization problem,International Journal of Numerical Methods and Applications,15:1(2016),79-91.

[26]J.J.Peng, A.P.Liao,Z.Y.Peng,An iterative method to solve a nonlinear matrix equation, ElectronicJournal of Linear Algebra,31(2016), 620-632.

[27]J.J.Peng, A.P. Liao, Z.Y. Peng, Aniteration method to solve multiple constrained least squaresproblemsJournalof Computational and Applied Mathematics322(2017), 129-138.

[28]D.X.Xie, A.B. Xu, Z.Y. Peng,Least-squares symmetric solution to the matrix equation AXB = C withthe norm inequality constraint, Int. J. Computer Math., 2016,http://dx.doi.org/10.1080/00207160.2015.1067310.9392016),1564-1578.

[29]J.J. Peng, A.P. Liao, Z.Y. Peng , An iterative method to solve anonlinear matrix equation, Electronic Journal of LinearAlgebra,31(2016), 620-632.

[30]J.J. Peng, A.P. Liao, Z.Y. Peng, An iteration method to solvemultiple constrained least squares problemsJournalof Computational and Applied Mathematics322(2017),129-138.

[31]J.J.Peng,A.P. Liao,Z.Y. Peng,Z.C. Chen, Newton s iterative method to solve a nonlinear matrixequation, Linearand Multilinear Algebra,67 (2019)1867-1878.

[32]J.J. Peng, Q.W. Wang, Z.Y. Peng, Z.C. Chen, Solution of symmetricpositive semidefinite Procrustes problem, Electronic Journal ofLinear Algebra35(2019),543-554.

[33]Q.Yuan, Z.Y.Peng, Z.C.Chen, Y.K.Guo, B.Yang, X.Y.Zeng,MedicalImage Denoising Algorithm Based on Sparse Nonlocal RegularizedWeighted Coding and Low Rank Constraint,Scientific Programming, 2021,Article ID 7008406.

[34]Q.Yuan, Z.Y.Peng, Z.C.Chen, Y.K.Guo, B.Yang, X.Y.Zeng,,Edge-PreservingMedian Filter and Weighted Coding with Sparse Nonlocal Regularizationfor Low-Dose CT Image Denoising Algorithm, Journal of HealthcareEngineering, 2021, Article ID 6095676.

[35]S.J.Lin, X.L. Xu, F.R. Hu, Z.C. Chen, Y.L. Wang, L.H. Zhang, Z.Y. Peng,D.X. Li, L.H. Zeng, Y. Chen, Z.Y. WangUsingantibody modifified terahertz metamaterial biosensor to detectconcentration of carcinoembryonic antigenIEEEJ. Selected Topics in Quantum Electroning, 27:4(2021), ArticleID 600207.

[36]S.J. Lin , Y.L. Wang, Z.Y. Peng, Z.C. Chen, F.R. Hu, Detection ofcancer biomarkers CA125 and CA199 via terahertz metasurfaceimmunosensor, Talanta 248 (2022), ArticleID123628.

 

(二)代表性科研项目

(1)湖南省教育厅科学研究项目:约束矩阵方程及其数值解法,2002/01-2004/12,主持.

(2)中国博士后科学基金项目:矩阵逆奇异值问题及其应用,2004/01-2006/12,主持.

(3)湖南省教育厅委委托研究项目:约束矩阵方程及其Procrustes问题迭代解法,2006/01-2007/12,主持.

(4)湖南省自然科学基金项目:约束矩阵方程有效算法及其应用研究,2007/01-2009/12,主持.

(5) 国家自然科学基金项目:传输理论与随机服务系统中的矩阵问题及其有效算法研究,2009/01-2011/12,主持.

(6)国家自然科学基金项目:区间约束矩阵最优化问题有效算法及应用研究,2013/01-2016/12,主持.

(7)广西区自然科学基金项目:金融工程与统计分析中矩阵最优化的有效算法研究,2017/9-2020/9,主持.

(8)国家自然科学基金项目:多重约束条件下矩阵最优化问题的有效算法研究,持,2020/01-2023/12,主持. 

四、主要荣誉与奖励

(1)2003年获娄底市政府第二届青年科技奖

(2)2004年指导全国大学生数学建模获湖南省二等奖1项,国家二等奖1

(3)2005年指导全国大学生数学建模获湖南省三等奖1

(4)2006年指导全国大学生数学建模获湖南省一等奖2项,国家二等奖2

(5)2013年,项目:高维约束矩阵方程问题的理论与方法研究,获广西区自然科学技术奖三等奖(排名第一).

(6)2020年,项目:约束矩阵方程及最小二乘问题的求解理论与算法,获广西自然科学技术奖二等奖(排名第三).



Baidu
sogou
Baidu
sogou